Key - Worksheet - Wave Properties and Math

1. To make a wavelength of rope shorter, one should shake the rope at a

__higher____ (higher or lower) frequency.

2. The primary difference between an electromagnetic wave and a mechanical wave is that a(n) _electromagnetic__ wave can travel through empty space, while the other cannot.

3. Waves carry _energy___ but does not carry the _medium___ with it.

4. The energy of a wave depends on its ___amplitude____.

5. In a __transverse____ wave, the medium vibrates up and down as the wave moves horizontally. In a __longitudinal____ wave, the medium moves back and forth as the wave moves horizontally.

6. The speed of a wave depends on the __medium____. It can be calculated by multiplying __frequency____X ___wavelength____.

7. Wave **_frequency** (frequency or velocity) is the number of vibrations per second of a part of the medium.

- 8. As the wavelength of a wave increases, the frequency of the wave _decreases_.
- 9. The frequency of a certain color of light is 4.2×10^{14} Hz. The speed of light is 3.0×10^8 m/s. Find its wavelength.

$$v = f\lambda$$

3.0 x 10⁸ m/s = 4.2 x 10¹⁴ Hz x λ
 $\lambda = 7.1 \times 10^{-7}$ m

10. A wave has a period of 12.0 s. The distance between a crest and the adjacent trough is 2.00 m.

a. What is the frequency? f = 1/T f = 1/12.0 f = 0.083 Hz

b. What is the wavelength? $2.00 \times 2 = 4.00 \text{ m}$

c. What is the velocity? $v = f\lambda$ $v = 0.083 \times 4.00$ v = 0.33 m/s