Vectors and Angles

1. Define scalar and vector quantities:

Scalar quantities have no direction and can be expressed with a number and unit (magnitude) only. Vectors require direction and must be expressed with magnitude and direction.
2. Which is a scalar and which is a vector?

A weight of 50 N vector
20 seconds of time scalar
a mass of 10 kg
the length of your pencil
scalar
scalar

instructions on a treasure map vector	
the force of friction	vector
your age	scalar
$5 \mathrm{~m} / \mathrm{s}$, West	vector

3. In a vector, the length of the arrow represents the \qquad magnitude
4. If you walk 5 blocks to school, then 5 blocks back home because you forgot your homework, then 5 blocks back to school, your distance traveled is 15 blocks, but your displacement is 5 blocks . This is because(distance, displacement) is a quantity where direction does not matter (a \qquad scalar quantity, while (distance displacement) is a quantity where direction does matter (a \qquad quantity).

5. Give the angle and direction of each vector.
$\begin{array}{lc} & 11^{\circ} E \text { of } N \\ & \frac{34^{\circ} \mathrm{N} \text { of } W}{} \\ \text { b. } & 12^{\circ} S \text { of } W \\ \text { c. } & 17^{\circ} \mathrm{W} \text { of } S \\ \text { d. } & 30^{\circ} S \text { of } E \\ \text { e. }\end{array}$
6. Draw and label the following vectors:
a. $12^{\circ} \mathrm{W}$ of N
b. $31^{\circ} \mathrm{E}$ of N

c. 25° S of E
d. $43^{\circ} \mathrm{N}$ of E
e. $8^{\circ} S$ of W
