1. Give two examples of scalar quantities: includes mass, time, distance, speed, volume, density
2. Give two examples of vector quantities: includes velocity, displacement, force, weight
3. \qquad quantities have magnitude only. Magnitude is expressed by a \qquad and a \qquad unit
4. Vector quantities have \qquad and \qquad direction
5. Vectors may be represented by \qquad with the magnitude shown by the \qquad arrows
6. One vector having the same effect as two or more vectors combined is a
\qquad resultant vector.
7. To find the resultant of two component vectors acting in the same direction,
\qquad .
8. To find the resultant of two component vectors acting in opposite directions, subtract \qquad
9. Identify the following quantities as vector or scalar:
a. $5.0 \mathrm{~m} / \mathrm{s}$ South \qquad c. 7.4 g

scalar
scalar

Use math to solve these problems:

1. What is the resultant of two component vectors of 78.3 units W and 15.2 units N ?

$$
\begin{aligned}
& a=15.2 \quad b=78.3 \quad c=? \\
& c=\sqrt{15.2^{2}+78.3^{2}}=79.8 \text { units } \\
& \tan \Theta=\frac{15.2}{78.3} \quad \Theta=11.0^{\circ}
\end{aligned}
$$

$$
79.8 \text { units, } 11.0^{\circ} \mathrm{N} \text { of } \mathrm{E}
$$

2. An airplane flies southward with a velocity of $922 \mathrm{~km} / \mathrm{h}$. There is a brisk tailwind (meaning blowing on the tail of the plane) with a velocity of $25 \mathrm{~km} / \mathrm{h}$. What is the resultant velocity of the plane?

$$
922 \mathrm{~km} / \mathrm{h}+25 \mathrm{~km} / \mathrm{h}=947 \mathrm{~km} / \mathrm{h} \text { South }
$$

3. Calculate the components of a resultant vector of 804 units, $17^{\circ} \mathrm{W}$ of S .

$$
\begin{array}{lll}
\Theta=17^{\circ} & c=804 & a=\text { west }=? \quad b=\text { south }=? \\
\sin 17^{\circ}=\frac{\text { west }}{804} \quad \text { west }=235 \text { units }
\end{array}
$$

$$
\cos 17^{\circ}=\frac{\text { south }}{804} \quad \text { south }=769 \text { units }
$$

4. A person can row a boat $6.93 \mathrm{~km} / \mathrm{h}$ in still water. If the person rows directly west across a river that flows north at $5.00 \mathrm{~km} / \mathrm{h}$, what is the magnitude and direction of the resultant velocity?

$$
\begin{aligned}
& a=5.00 \quad b=6.93 \quad c=? \\
& c=\sqrt{5.00^{2}+6.93^{2}}=8.55 \mathrm{~km} / \mathrm{h} \\
& \tan \Theta=\frac{5.00}{6.93} \quad \Theta=35.8^{\circ}
\end{aligned}
$$

$$
8.55 \mathrm{~km} / \mathrm{h}, 35.8^{\circ} \mathrm{N} \text { of } \mathrm{W}
$$

Use the head-to-tail method to solve the following:

1. A car travels 150 km east before turning and traveling 275 km north. What is the car's displacement?
approx. $310 \mathrm{~km}, 29^{\circ}$ E of N

2. A student walks 15 paces West then 7 paces South then 8 paces East and finally 5 paces North. What is the resultant from the start to the finish?
approx. 7 paces, $16^{\circ} S$ of W
