1. Work is the product of the \qquad force direction exerted on an object and the distance the object moves in the \qquad of the force.
2. The equation for work is \qquad $W=F \times d$ \qquad -.
3. The unit for work is the \qquad which also called the \qquad Joule .
4. Work is done on an object only if the object \qquad moves -.
5. Work is done on an object only if the force and displacement are in the same direction

For each problem, draw a diagram to make sure the force and displacement are in the same direction.
6. A person lifts a package weighing 75 N . If she lifts it 1.2 m off the floor, what work has she done?

$$
\begin{aligned}
W & =F \times d=(75 \mathrm{~N})(1.2 \mathrm{~m}) \\
& =9 \overline{0} \mathrm{~J}
\end{aligned}
$$

7. When 142 J of work is done in pushing a box horizontally 13.3 m , how much force is applied?

$$
\begin{aligned}
& W=F \times d \quad F=\frac{W}{d} \\
& F=\frac{142 \mathrm{~J}}{13.3 \mathrm{~m}}=10.7 \mathrm{~N}
\end{aligned}
$$

8. What work is done when a person pushes a refrigerator weighing 720 N across a floor 12 m ? (The force of friction between the refrigerator and the floor is 480 N .)

$$
\begin{aligned}
W & =F \times d=(480 \mathrm{~N})(12 \mathrm{~m}) \\
& =5800 \mathrm{~J}
\end{aligned}
$$

The weight has no bearing on this problem because it is a force acting in a different direction than the motion.
9. A sailor pulls a boat along a dock using a rope at an angle of 60.0° with the horizontal. How much work does the sailor do if he exerts a force of 255 N on the rope and pulls the boat 3.00 m ?

10. A girl pulls a wagon along a level path for a distance of 44 m . The handle of the wagon makes an angle of 22° above horizontal. If she pulls on the handle with a force of 87 N , how much work is done?

If students calculate F_{x} and use rounded answer, they will get a final answer of 3600 J . It is best to combine equations and calculate only once.

