Name General Physics (period 1) Mrs. Ciustea October 22, 2013 Partner(s): Partner 1, Partner 2

UNIFORM ACCELERATION LAB: CAR AND RAMP

DATA COLLECTION:

Table 1: Time Measurements	based on Position	of a Car Rolling I	Down an Inclined Ramp
		0	1

Position of Gate B (±0.1 cm)	Time through Gate A (±0.0005 s)			Time through Gate B (±0.0005 s)			Time from Gate A to Gate B (±0.0005 s)		
	Trial 1	Trial 2	Trial 3	Trial 1	Trial 2	Trial 3	Trial 1	Trial 2	Trial 3
10.0	0.1242	0.1249	0.1256	0.0859	0.0871	0.0864	0.1197	0.1232	0.1268
15.0	0.1245	0.1246	0.1244	0.0700	0.0700	0.0706	0.2130	0.2112	0.2141

Position of Gate A = $5.0 \pm 0.1 \text{ cm}$

Length of Car "Wing"= 5.00 cm ±0.05 cm = 0.0500 ±0.0005 m

Position of Gate B (m)	Average Time through Gate A (s)	Average Time through Gate B (s)	Average Time from Gate A to Gate B (s)	Initial Velocity (^m / _S)	Final Velocity (^m / _S)
0.100	0.1249	0.0865	0.1245	0.400	0.580
0.150	0.1245	0.0702	0.2119		0.710

SAMPLE CALCULATIONS:

Average Time through Photogate A at Position = 0.10 m:

$$t_{A (average)} = \frac{t_{A1} + t_{A2} + t_{A3}}{3} = \frac{0.1242 \text{ s} + 0.1249 \text{ s} + 0.1256 \text{ s}}{3}$$
$$t_{A (average)} = 0.1249 \text{ s}$$

Average Time through Photogate B at Position = 0.10 m:

$$t_{B (average)} = \frac{t_{B1} + t_{B2} + t_{B3}}{3} = \frac{0.0859 \text{ s} + 0.0871 \text{ s} + 0.0864 \text{ s}}{3}$$
$$t_{B (average)} = 0.0865 \text{ s}$$

Average Time from Photogate A to Photogate B at Position = 0.10 m:

$$t_{A \to B \ (average)} = \frac{t_{A \to B1} + t_{A \to B2} + t_{A \to B3}}{3} = \frac{0.1197 \text{ s} + 0.1232 \text{ s} + 0.1268 \text{ s}}{3}$$
$$t_{A \to B \ (average)} = 0.1245 \text{ s}$$

Initial Velocity (at Photogate A) at Position = 0.10 m:

$$v_{initial} = \frac{length of wing}{t_{A (average)}} = \frac{0.0500 \text{ m}}{0.1249 \text{ s}}$$
$$v_{initial} = 0.400 \text{ m}/\text{s}$$

Final Velocity (at Photogate B) at Position = 0.10 m:

$$v_{final} = \frac{\text{length of wing}}{t_{B (average)}} = \frac{0.0500 \text{ m}}{0.0865 \text{ s}}$$

$$v_{final} = 0.580 \,\mathrm{m}/\mathrm{s}$$

DATA ANALYSIS:

Graph 1: Total Time of a Car on a Ramp with Final Position

This graph models our equation: $d_2 = d_1 + v_1 t + \frac{1}{2}at^2$

Graph 2: Velocity of a Car on a Ramp with Total Time

This graph models our equation: $v_2 = v_1 + at$

This graph models a linearized version of our equation: $d = v_1 t + \frac{1}{2}at^2$

This graph models our equation: $v_2^2 = v_1^2 + 2ad$

ANALYSIS QUESTIONS:

- 3. It is very easy to find the acceleration from Graph 2. The acceleration can be found from the <u>slope</u> of a velocity-time graph. To find the acceleration from Graph 1 is a bit more difficult. You would have to use tangent lines to create a velocity-time graph. It's easier just to use Graph 2.
- 5. The slopes of my graphs are as follows:
 - Graph 2: $1.48 \text{ m}/_{\text{s}^2}$
 - Graph 3: $1.27 \text{ m}/\text{s}^2$
 - Graph 4: $3.05 \text{ m}/_{s^2}$
- 6. The slope of Graph 4 is about twice the value of the slope of Graph 2. (This is because they're modeling equations that we know! Graph 2 is showing $v_2 = v_1 + at$ and Graph 4 is showing $v_2^2 = v_1^2 + 2ad$. You can see that the acceleration is multiplied by 2 for Graph 4).
- 7. My acceleration, from the slope of Graph 2, is 1.48 m/s^2 . The accepted value is 1.55 m/s^2 :

$$\% Error = \left| \frac{Accepted - Experimental}{Accepted} \right| \times 100\% = \left| \frac{1.55 \text{ m}/_{\text{S}^2} - 1.48 \text{ m}/_{\text{S}^2}}{1.55 \text{ m}/_{\text{S}^2}} \right| \times 100\%$$
$$\% Error = 4.5\%$$

CONCULSION:

- 1. In this lab, I found the acceleration of the car down the ramp to be 1.48 $m/_{S^2}$. This is a fairly accurate answer, being within 4.5% of the accepted value of 1.55 $m/_{S^2}$.
- 2. Possible sources of error:
 - a. Photogates were loose and tightening them caused them to register as blocks, so they moved a little with each trial
 - b. The ramp rocked a lot, so our times might have been affected by that near the bottom of the ramp
 - c. Giving the car a push when releasing it