Uniform Acceleration Lab: CAR and Ramp

DATA COLLECTION:

Table 1: Time Measurements based on Position of a Car Rolling Down an Inclined Ramp

Position of Gate B $(\pm \mathbf{0 . 1} \mathbf{~ c m})$	Time through Gate A $\mathbf{(~} \pm \mathbf{0 . 0 0 0 5} \mathbf{~ s)}$			Time through Gate B $\mathbf{(~} \pm \mathbf{0 . 0 0 0 5} \mathbf{~ s)}$			Time from Gate A to Gate B ($\pm \mathbf{0 . 0 0 0 5} \mathbf{s})$		
	Trial 1	Trial 2	Trial 3	Trial 1	Trial 2	Trial 3	Trial 1	Trial 2	Trial 3
10.0	0.1242	0.1249	0.1256	0.0859	0.0871	0.0864	0.1197	0.1232	0.1268
15.0	0.1245	0.1246	0.1244	0.0700	0.0700	0.0706	0.2130	0.2112	0.2141
\ldots									

Position of Gate $A=5.0 \pm 0.1 \mathrm{~cm}$
Length of Car "Wing" $=5.00 \mathrm{~cm} \pm 0.05 \mathrm{~cm}=0.0500 \pm 0.0005 \mathrm{~m}$

Table 2: Average Time and Velocities for a Car on an Inclined Ramp

Position of Gate B (\mathbf{m})	Average Time through Gate A $\mathbf{(s)}$	Average Time through Gate B $\mathbf{(s)}$	Average Time from Gate A to Gate B $\mathbf{(s)}$	Initial Velocity $(\mathbf{m} / \mathbf{s})$	Final Velocity $(\mathbf{m} / \mathbf{s})$
0.100	0.1249	0.0865	0.1245	0.400	0.580
0.150	0.1245	0.0702	0.2119		0.710
\ldots	\ldots	\ldots	\ldots		\ldots

SAMPLE CALCULATIONS:

Average Time through Photogate A at Position $\mathbf{= 0 . 1 0} \mathbf{~ m}$:

$$
\begin{gathered}
t_{A(\text { average })}=\frac{t_{A 1}+t_{A 2}+t_{A 3}}{3}=\frac{0.1242 \mathrm{~s}+0.1249 \mathrm{~s}+0.1256 \mathrm{~s}}{3} \\
\boldsymbol{t}_{\boldsymbol{A}(\text { average })}=\mathbf{0 . 1 2 4 9} \mathbf{s}
\end{gathered}
$$

Average Time through Photogate B at Position $=\mathbf{0 . 1 0} \mathbf{~ m}$:

$$
\begin{gathered}
t_{B(\text { average })}=\frac{t_{B 1}+t_{B 2}+t_{B 3}}{3}=\frac{0.0859 \mathrm{~s}+0.0871 \mathrm{~s}+0.0864 \mathrm{~s}}{3} \\
\boldsymbol{t}_{\boldsymbol{B}(\text { average })}=\mathbf{0 . 0 8 6 5 \mathbf { s }}
\end{gathered}
$$

Average Time from Photogate A to Photogate B at Position $\mathbf{= 0 . 1 0} \mathbf{~ m}$:

$$
\begin{gathered}
t_{A \rightarrow B(\text { average })}=\frac{t_{A \rightarrow B 1}+t_{A \rightarrow B 2}+t_{A \rightarrow B 3}}{3}=\frac{0.1197 \mathrm{~s}+0.1232 \mathrm{~s}+0.1268 \mathrm{~s}}{3} \\
\boldsymbol{t}_{A \rightarrow B(\text { average })}=\mathbf{0 . 1 2 4 5 ~ s}
\end{gathered}
$$

Initial Velocity (at Photogate A) at Position = 0.10 m :

$$
\begin{aligned}
& v_{\text {initial }}=0.400 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Final Velocity (at Photogate B) at Position $\mathbf{=} \mathbf{0 . 1 0} \mathbf{~ m}$:

$$
\begin{gathered}
v_{\text {final }}=\frac{\text { length of wing }}{t_{B(\text { average })}}=\frac{0.0500 \mathrm{~m}}{0.0865 \mathrm{~s}} \\
v_{\text {final }}=\mathbf{0 . 5 8 0} \mathbf{m} / \mathrm{s}
\end{gathered}
$$

DATA ANALYSIS:

Graph 1: Total Time of a Car on a Ramp with Final Position

This graph models our equation: $d_{2}=d_{1}+v_{1} t+\frac{1}{2} a t^{2}$

Graph 2: Velocity of a Car on a Ramp with Total Time

This graph models our equation: $v_{2}=v_{1}+a t$

This graph models a linearized version of our equation: $d=v_{1} t+\frac{1}{2} a t^{2}$

This graph models our equation: $v_{2}{ }^{2}=v_{1}{ }^{2}+2 a d$

ANALYSIS QUESTIONS:

3. It is very easy to find the acceleration from Graph 2. The acceleration can be found from the slope of a velocity-time graph. To find the acceleration from Graph 1 is a bit more difficult. You would have to use tangent lines to create a velocity-time graph. It's easier just to use Graph 2.
4. The slopes of my graphs are as follows:

- Graph 2: $1.48 \mathrm{~m} / \mathrm{s}^{2}$
- Graph 3: $1.27 \mathrm{~m} / \mathrm{s}^{2}$
- Graph 4: $3.05 \mathrm{~m} / \mathrm{s}^{2}$

6. The slope of Graph 4 is about twice the value of the slope of Graph 2. (This is because they're modeling equations that we know! Graph 2 is showing $v_{2}=v_{1}+a t$ and Graph 4 is showing $v_{2}^{2}=v_{1}^{2}+2 a d$. You can see that the acceleration is multiplied by 2 for Graph 4).
7. My acceleration, from the slope of Graph 2 , is $1.48 \mathrm{~m} / \mathrm{s}^{2}$. The accepted value is $1.55 \mathrm{~m} / \mathrm{s}^{2}$:

$$
\begin{gathered}
\% \text { Error }=\left|\frac{\text { Accepted }- \text { Experimental }}{\text { Accepted }}\right| \times 100 \%=\left|\frac{1.55 \mathrm{~m} / \mathrm{s}^{2}-1.48 \mathrm{~m} / \mathrm{s}^{2}}{1.55 \mathrm{~m} / \mathrm{s}^{2}}\right| \times 100 \% \\
\% \text { Error }=\mathbf{4 . 5} \%
\end{gathered}
$$

CONCULSION:

1. In this lab, I found the acceleration of the car down the ramp to be $1.48 \mathrm{~m} / \mathrm{s}^{2}$. This is a fairly accurate answer, being within 4.5% of the accepted value of $1.55 \mathrm{~m} / \mathrm{s}^{2}$.
2. Possible sources of error:
a. Photogates were loose and tightening them caused them to register as blocks, so they moved a little with each trial
b. The ramp rocked a lot, so our times might have been affected by that near the bottom of the ramp
c. Giving the car a push when releasing it
