## UNIFORM ACCELERATION LAB: CAR AND RAMP

## **DATA COLLECTION:**

Table 1: Time Measurements based on Position of a Car Rolling Down an Inclined Ramp

| Position of Gate B (±0.1 cm) | Time through Gate A $(\pm 0.0005  \mathrm{s})$ |         |         | Time through Gate B $(\pm 0.0005 \text{ s})$ |         |         | Time from Gate A to Gate B ( $\pm 0.0005$ s) |         |         |
|------------------------------|------------------------------------------------|---------|---------|----------------------------------------------|---------|---------|----------------------------------------------|---------|---------|
|                              | Trial 1                                        | Trial 2 | Trial 3 | Trial 1                                      | Trial 2 | Trial 3 | Trial 1                                      | Trial 2 | Trial 3 |
| 10.0                         | 0.1242                                         | 0.1249  | 0.1256  | 0.0859                                       | 0.0871  | 0.0864  | 0.1197                                       | 0.1232  | 0.1268  |
| 15.0                         | 0.1245                                         | 0.1246  | 0.1244  | 0.0700                                       | 0.0700  | 0.0706  | 0.2130                                       | 0.2112  | 0.2141  |
|                              |                                                |         |         |                                              |         |         | •••                                          |         |         |

**Position of Gate A =**  $5.0 \pm 0.1 \text{ cm}$ 

**Length of Car "Wing" =**  $5.00 \text{ cm} \pm 0.05 \text{ cm} = 0.0500 \pm 0.0005 \text{ m}$ 

Table 2: Average Time and Velocities for a Car on an Inclined Ramp

| Position of Gate B (m) | Average Time<br>through Gate A<br>(s) | Average Time<br>through Gate B<br>(s) | Average Time<br>from Gate A to<br>Gate B<br>(s) | Initial<br>Velocity<br>( <sup>m</sup> / <sub>S</sub> ) | Final<br>Velocity<br>( <sup>m</sup> / <sub>S</sub> ) |
|------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|
| 0.100                  | 0.1249                                | 0.0865                                | 0.1245                                          | 0.400                                                  | 0.580                                                |
| 0.150                  | 0.1245                                | 0.0702                                | 0.2119                                          |                                                        | 0.710                                                |
|                        |                                       |                                       |                                                 |                                                        |                                                      |

#### **SAMPLE CALCULATIONS:**

Average Time through Photogate A at Position = 0.10 m:

$$t_{A (average)} = \frac{t_{A1} + t_{A2} + t_{A3}}{3} = \frac{0.1242 \text{ s} + 0.1249 \text{ s} + 0.1256 \text{ s}}{3}$$

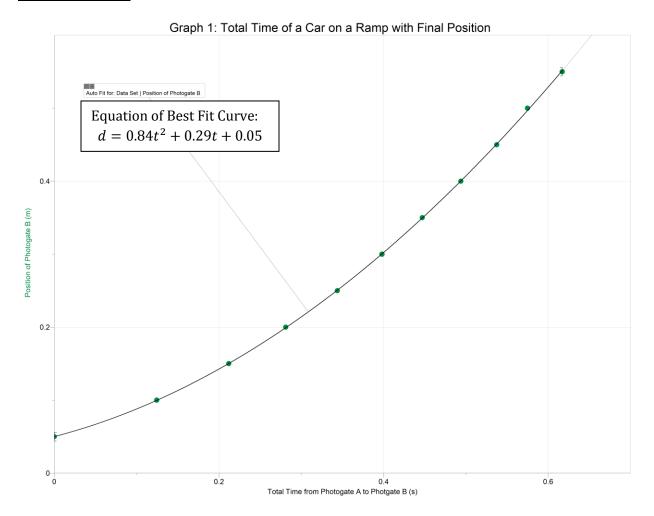
$$t_{A (average)} = 0.1249 \text{ s}$$

Average Time through Photogate B at Position = 0.10 m:

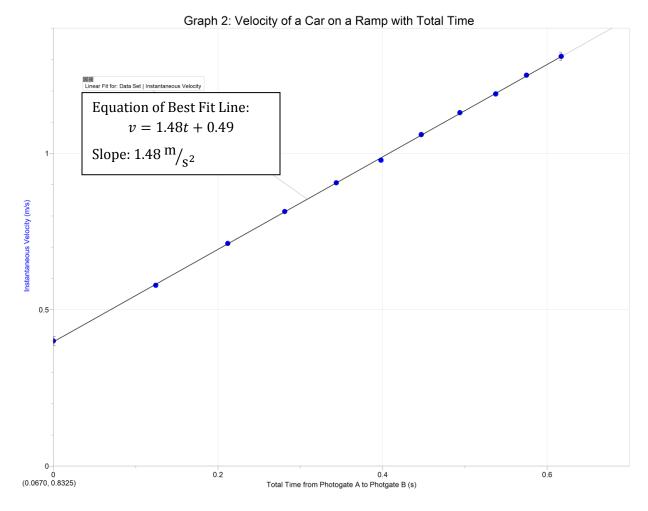
$$t_{B (average)} = \frac{t_{B1} + t_{B2} + t_{B3}}{3} = \frac{0.0859 \text{ s} + 0.0871 \text{ s} + 0.0864 \text{ s}}{3}$$
$$t_{B (average)} = 0.0865 \text{ s}$$

Average Time from Photogate A to Photogate B at Position = 0.10 m:

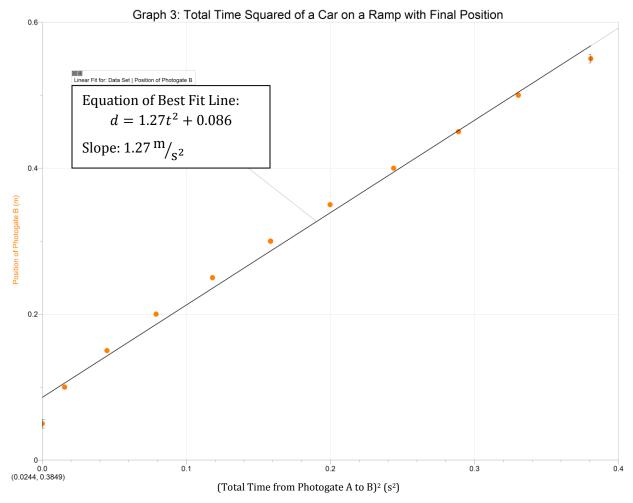
$$t_{A \to B \; (average)} = \frac{t_{A \to B1} + t_{A \to B2} + t_{A \to B3}}{3} = \frac{0.1197 \text{ s} + 0.1232 \text{ s} + 0.1268 \text{ s}}{3}$$
$$t_{A \to B \; (average)} = \mathbf{0.1245 \; s}$$


**Initial Velocity (at Photogate A) at Position = 0.10 m:** 

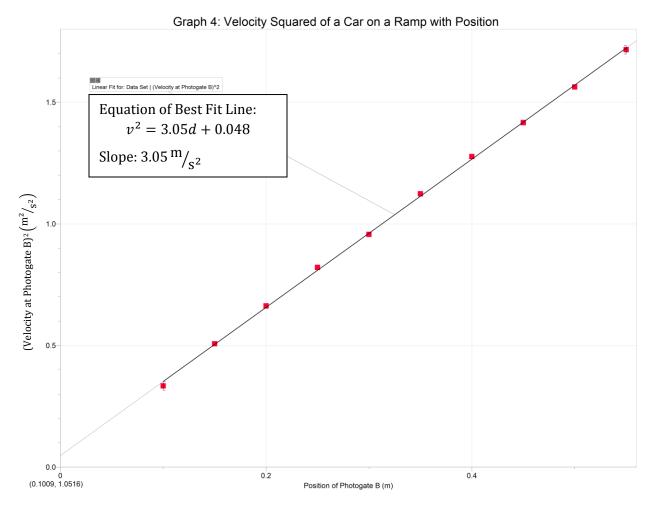
$$v_{initial} = \frac{length \ of \ wing}{t_{A \ (average)}} = \frac{0.0500 \ m}{0.1249 \ s}$$
$$v_{initial} = 0.400 \ m/s$$


Final Velocity (at Photogate B) at Position = 0.10 m:

$$v_{final} = \frac{length \ of \ wing}{t_{B \ (average)}} = \frac{0.0500 \ \text{m}}{0.0865 \ \text{s}}$$
$$v_{final} = 0.580 \ \text{m}/\text{s}$$


# **DATA ANALYSIS:**




This graph models our equation:  $d_2=d_1+v_1t+rac{1}{2}at^2$ 



This graph models our equation:  $v_2 = v_1 + at$ 



This graph models a linearized version of our equation:  $d=v_1t+rac{1}{2}at^2$ 



This graph models our equation:  $v_2^2 = v_1^2 + 2ad$ 

### **ANALYSIS QUESTIONS:**

- 3. It is very easy to find the acceleration from Graph 2. The acceleration can be found from the slope of a velocity-time graph. To find the acceleration from Graph 1 is a bit more difficult. You would have to use tangent lines to create a velocity-time graph. It's easier just to use Graph 2.
- 5. The slopes of my graphs are as follows:
  - Graph 2: 1.48  $^{\rm m}/_{\rm S^2}$
  - Graph 3:  $1.27 \, \text{m}/\text{s}^2$
  - Graph 4:  $3.05 \, \text{m}/\text{s}^2$
- 6. The slope of Graph 4 is about twice the value of the slope of Graph 2. (This is because they're modeling equations that we know! Graph 2 is showing  $v_2 = v_1 + at$  and Graph 4 is showing  $v_2^2 = v_1^2 + 2ad$ . You can see that the acceleration is multiplied by 2 for Graph 4).
- 7. My acceleration, from the slope of Graph 2, is 1.48  $^{\rm m}/_{\rm S^2}$ . The accepted value is 1.55  $^{\rm m}/_{\rm S^2}$ :

% Error = 
$$\left| \frac{Accepted - Experimental}{Accepted} \right| \times 100\% = \left| \frac{1.55 \text{ m}/_{\text{S}^2} - 1.48 \text{ m}/_{\text{S}^2}}{1.55 \text{ m}/_{\text{S}^2}} \right| \times 100\%$$
  
% Error = 4.5%

### **CONCLUSION:**

- 1. In this lab, I found the acceleration of the car down the ramp to be 1.48  $^{\rm m}/_{\rm S^2}$ . This is a fairly accurate answer, being within 4.5% of the accepted value of 1.55  $^{\rm m}/_{\rm S^2}$ .
- 2. Possible sources of error:
  - a. Photogates were loose and tightening them caused them to register as blocks, so they moved a little with each trial
  - b. The ramp rocked a lot, so our times might have been affected by that near the bottom of the ramp
  - c. Giving the car a push when releasing it