\qquad
\qquad
CHAPTER
2 Study Guide Key

Representing Motion

Vocabulary Review

Write the term that correctly completes the statement. Use each term once.

| average speed | instantaneous | origin | resultant |
| :--- | :--- | :--- | :--- | :--- |
| average velocity | position | particle model | scalar |
| coordinate system | instantaneous velocity | position | time interval |
| displacement | magnitude | position-time graph | vector |
| distance | motion diagram | | |

1. InstantaneoUS The speed and direction of an object at a particular instant is the velocity
2. magnitude Another term given for the size of a quantity is the \qquad
3.

 The \qquad is the location of an object relative to an origin.
4. time interval The formula $t_{\mathrm{f}}-t_{\mathrm{i}}$ represents \qquad .-
5. \qquad A \qquad is a quantity with both magnitude and direction.
6.
 Ratio of the change in position to the time interval during which
7.
7.
\qquad he change occurred is the \qquad -
8. studying is the \qquad -.
 The zero point is also called the \qquad .
9. position-time graph graph with time data on the horizontal axis and position data on the vertical axis is a \qquad -
10. motion diagram A. \qquad shows a series of images showing the position of a
11. \qquad moving object over equal time intervals. A vector that represents the sum of two or more vectors is a \qquad .
12. particle model A simplified motion diagram that shows the object in motion as a series of points is a \qquad .
13. distance
14. scalar A scalar quantity that is the length, or size, of the displacement vector is \qquad .
\qquad A quantity that has only magnitude is \qquad _.
\qquad

2 Study Guide

15. instantaneaus position
16. displacement The location of an object at a particular instant is \qquad .
17. average speed The vector quantity that defines the distance and direction between two positions is \qquad -. The absolute value of the slope on a position-time graph is

Section 2. 1 Picturing Motion

In your textbook, read about motion diagrams on pages 31-33.
Refer to the diagrams below to answer questions 1-5. Circle the letter of the choice that best completes the statement.

1. In set I, the object that is moving is \qquad
a. A
c. C
(b) B
d. none of the above
2. Set II shows that object B is \qquad -.
a. at rest
c. slowing down
b. increasing its speed
d. traveling at a constant speed
3. Set \qquad shows object B is slowing down.
a. I
c. III
b. II
(d.) IV
\qquad
4. Set \qquad shows object B at rest.
a. I
(c.) III
b. II
d. IV
5. Set \qquad shows object B traveling at a constant speed.
(a. I
c. III
b. II
d. IV

Section $2: 2$ Where and When?

In your textbook, read about coordinate systems on pages 34-35.
Refer to the diagrams below to answer questions 1-5.

1. What are the position vectors for A, B, C, D, and E ?

2. If the object is moving from left to right in D, and each division represents the passage of 1 s , what is the velocity of the object?

$$
v=\Delta d / \Delta t \quad v=3 \mathrm{~m} / 3 \mathrm{~s}=1 \mathrm{~m} / \mathrm{s}
$$

3. If the object is moving from right to left in D, what is the velocity of the object?

$$
-1 \mathrm{~m} / \mathrm{s}
$$

\qquad
4. In which sets are there objects with positive position vectors?

5. In which sets are there objects with negative position vectors?

B

Section 2.3 Position-Time Graphs

In your textbook, read about position-time graphs on pages 38-42. Refer to the diagram below to answer questions 1-7.

1. What quantity is represented on the x-axis?
time
2. What quantity is represented on the y-axis?

position

3. What is the position of the object at 6.0 s ?

$$
9 m
$$

4. How much time has passed when the object is at 6.0 m ?

$$
45
$$

5. How far does the object travel for every second it is in motion?

$$
v=\Delta d / \Delta t \quad \Delta d=v, \Delta t=3 \mathrm{~m} / 2 \mathrm{~s}=1.5 \mathrm{~m} / \mathrm{s}
$$

6. If the object continues at this speed, when will the object reach 18.0 m ?
$v=\Delta d / \Delta t \quad \Delta t=\frac{\Delta d}{v}=\frac{18 \mathrm{~m}}{1.5 \mathrm{~m} / \mathrm{s}}=12 \mathrm{~s}$
7. Where will the object be after 300 s ?

$$
\Delta d=v \cdot \Delta t=1.5 \mathrm{~m} / \mathrm{s} \cdot 300 \mathrm{~s}=450 \mathrm{~m}
$$

\qquad

Section 2.4 How Fast?
In your textbook, read about speed and velocity on pages 43-47.
Refer to the diagram below to answer questions 1-12.

1. What is the formula for finding Δt ?

$$
\Delta t=+f-t i
$$

2. Find Δt for the change in position from $d=5 \mathrm{~m}$ to $d=15 \mathrm{~m}$.

$$
\Delta t=6 s-2 s=4 s
$$

3. What is the formula for finding Δd ?

$$
\Delta d=d f-d i
$$

4. Find Δd for the time interval from $t=2.0 \mathrm{~s}$ to $t=8.0 \mathrm{~s}$.

$$
\Delta d=20 m-5 m=15 m
$$

5. What is the formula for finding the slope on a position-time graph?

$$
\text { Slope }=\frac{\text { rise }}{r u n}=\frac{\Delta d}{\Delta t}
$$

6. What is the slope of this line?

$$
v=\frac{\Delta d}{\Delta t}=\frac{10 \mathrm{~m}}{4 \mathrm{~s}}=2.5 \mathrm{~m} / \mathrm{s}
$$

7. What does the absolute value of the slope of this line represent?
average speed
8. What is the velocity of this object in m / s ?

$$
v=2.5 \mathrm{~m} / \mathrm{s}
$$

9. If this object continues at the same velocity, how long would it take this object to reach a position of $d=150 \mathrm{~m}$?

$$
v=\frac{\Delta d}{\Delta t} \left\lvert\, \Delta t=\frac{\Delta d}{v}=\frac{150 \mathrm{~m}}{2.5 \mathrm{~m} / \mathrm{s}}=60 \mathrm{~s}\right.
$$

10. If this object continues at the same velocity, how far will it have traveled when $t=200 \mathrm{~s}$?

$$
\Delta d=v \cdot \Delta t=2.5 \mathrm{~m} / \mathrm{s} \cdot 200 \mathrm{~s}=500 \mathrm{~m}
$$

11. What formula would you use to determine the position of this object if it had an initial position vector and then traveled at a fixed velocity for a certain amount of time?

$$
d_{2}=d_{1}+v \cdot \Delta t
$$

12. How far will this object have traveled if it had an initial position of 220 m and traveled at a velocity of $2.5 \mathrm{~m} / \mathrm{s}$ for 48 s ?

$$
\begin{aligned}
& d_{2}=220 \mathrm{~m}+2.5 \mathrm{~m} / \mathrm{s} \cdot 48 \mathrm{~s}=220 \mathrm{~m}+120 \mathrm{~m} \\
& d_{2}=340 \mathrm{~m}
\end{aligned}
$$

