Free Fall on the Moon

\qquad
\qquad
\qquad
3 Transparency 3-4 Worksheet

Free Fall on the Moon

1. A boy on Earth jumps straight upward with an initial velocity of $4.9 \mathrm{~m} / \mathrm{s}$.
a. How long does it take for him to reach maximum height?

$$
\begin{array}{l|l}
v_{i}=4.9 \mathrm{~m} / \mathrm{s} \\
v_{f}=0 \mathrm{~m} / \mathrm{s} \\
t=?
\end{array}\left|g=a=\frac{v f-v i}{t}\right| \begin{aligned}
& v f=v i-g t \\
& \text { b. At maximum height, what is his velocity? }
\end{aligned}
$$

b. At maximum height, what is his velocity?

$$
v f=0 \mathrm{~m} / \mathrm{s}
$$

$$
\sqrt{t=0.55}
$$

c. At maximum height, what is his acceleration? Explain your answer.

$$
a=g=9.8 m / s^{2}
$$

This acceleration is acting downward.
2. An astronaut wearing a $20-\mathrm{kg}$ spacesuit jumps on the Moon with an initial velocity of $16 \mathrm{~m} / \mathrm{s}$. On the Moon, the acceleration due to gravity is $1.62 \mathrm{~m} / \mathrm{s}^{2}$. (Assume that downward is the positive direction.)
a. How long does it take him to reach maximum height?

$$
\begin{array}{l|l}
\begin{array}{l}
m=20 \mathrm{~kg} \\
v_{i}=16 \mathrm{~m} / \mathrm{s} \\
g_{\text {b. What is the maximum height he reaches s }}=1 . \mathrm{g}
\end{array} \\
h=d=v_{i} t-\frac{g t^{2}}{2}=16 \mathrm{~m} / \mathrm{s} \cdot 9.87 \mathrm{~s}-1.62 \mathrm{~m} / \mathrm{s}^{2} \cdot \frac{(g .87 \mathrm{~s})^{2}}{2} h=79 \mathrm{~m}-v_{i} \\
h=\frac{v_{i}}{2}
\end{array}
$$

c. If you drew a velocity-time graph for the motion of the astronaut, what would be the slope of the line?

$$
\xrightarrow[\text { negative slope, the velocity is decreasing }]{\substack{\text { Slope }=-g=-1.62 \mathrm{~m} / \mathrm{s}^{2}}} \text { v(m/s)} \rightarrow \underset{\text { s lo }}{\rightarrow}
$$

negative slope, the velocity is decreasing.
d. Are the vectors for acceleration and initial velocity pointed in the same or different directions? Explain your answer.

These vectors have opposite directions; acceleration is acting downward, initial velocity is acting upward.

