"PhUn" WITH "Phree" Body DiAgrams ANSWER KEY

Instructions: Answer the following questions in your journal. For problems 1-8, draw a FBD for the situation described in each problem.

1. An anvil with a weight of 600 N is at rest on a table

2. A girl (mass $=60.0 \mathrm{~kg}$) is sitting motionless on a swing that is supported by 2 chains.

$$
\begin{aligned}
& \text { 频 }+\boldsymbol{F}_{T 2}=\left|\boldsymbol{F}_{\boldsymbol{g}}\right|=588 \mathrm{~N} \quad \rightarrow \quad \boldsymbol{F}_{T 1}=\boldsymbol{F}_{T 2}=294 \mathrm{~N} \\
& \boldsymbol{F}_{\boldsymbol{g}}=m \boldsymbol{g}=(60 \mathrm{~kg})\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=-588 \mathrm{~N}
\end{aligned}
$$

3. A rightward force is applied to a book sitting on a table causing it to accelerate. Assume the surface is frictionless.

$$
F_{N}=\left|F_{g}\right|
$$

4. Diagram all the forces acting on the book in problem three if friction is taken into account.

5. A rightward force of 8 N is applied to a 2.5 kg book sitting on a table causing it to accelerate. Include 4 N force of friction in your analysis. What is the net force on the book?

$$
\begin{aligned}
& \boldsymbol{F}_{N}=\left|\boldsymbol{F}_{g}\right|=25 \mathrm{~N} \mathrm{~T}^{\uparrow} \quad \mathrm{F}_{\text {net }(\mathrm{y})}=25 \mathrm{~N}+(-25 \mathrm{~N})=0 \mathrm{~N} \\
& \boldsymbol{F}_{\boldsymbol{f}}=-4 \mathrm{~N} \longleftrightarrow \boldsymbol{F}_{\boldsymbol{a p p}}=8 \mathrm{~N} \quad \mathrm{~F}_{\mathrm{net}(\mathrm{x})}=8 \mathrm{~N}+(-4 \mathrm{~N})=4 \mathrm{~N} \\
& \boldsymbol{F}_{\boldsymbol{g}}=m \boldsymbol{g}=(2.5 \mathrm{~kg})\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=-25 \mathrm{~N}
\end{aligned}
$$

6. A student drops a milk carton with a mass of 0.40 kg , neglect air resistance.

$$
\boldsymbol{F}_{\boldsymbol{g}}=m \boldsymbol{g}=(0.40 \mathrm{~kg})\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=-3.9 \mathrm{~N}
$$

7. A daring Spartan ($\mathrm{m}=75.0 \mathrm{~kg}$) goes skydiving and has reached a constant velocity as they drop. Include air resistance in your analysis and diagram all forces.

$$
\left\{\begin{array}{l}
\boldsymbol{F}_{\text {air resistance }}=\left|\boldsymbol{F}_{\boldsymbol{g}}\right|=735 \mathrm{~N} \\
\boldsymbol{F}_{\boldsymbol{g}}=m \boldsymbol{g}=(75.0 \mathrm{~kg})\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=-735 \mathrm{~N}
\end{array}\right.
$$

8. A football is moving upwards towards its peak after being booted by the punter. Neglecting air resistance, diagram all the forces acting on the ball as it moves towards its peak.

$$
\boldsymbol{F}_{\boldsymbol{g}}=m \boldsymbol{g}
$$

Situation B
9. In the situations to the right, there is an unbalanced force (usually called the net force) that acts on the object shown by each FBD. A net force exists whenever all vertical forces do not cancel each other and/or all horizontal forces don't cancel out. In each situation, identify the net force, including units, and the direction in which it is acting.

Situation A:

Situation C

Situation D

$F_{n e t}(y)=F_{N}+F_{g}=3 \mathrm{~N}+(-3 \mathrm{~N})=0 \mathrm{~N}$
$\mathrm{F}_{\mathrm{net}(\mathrm{x})}=F_{\text {app }}+F_{f}=5 \mathrm{~N}+(-5 \mathrm{~N})=0 \mathrm{~N}$

Situation B:

$F_{n e t}(y)=F_{N}+F_{g}=3 \mathrm{~N}+(-3 \mathrm{~N})=0 \mathrm{~N}$
$\mathrm{F}_{\mathrm{net}(\mathrm{x})}=F_{f}=5 \mathrm{~N}$

Situation C:

$F_{n e t}(y)=F_{N}+F_{g}=20 \mathrm{~N}+(-20 \mathrm{~N})=0 \mathrm{~N}$

Situation D:

$F_{\text {net }(y)}=F_{\text {air }}+F_{g}=40 \mathrm{~N}+(-25 \mathrm{~N})=15 \mathrm{~N}$
10. Describe a possible situation that would create the FBD shown in Situation A.

ANSWERS WILL VARY! Sample Answer: A box weighing 3 N is pushed along the floor at a constant speed with a push force of 5 N .

