PRE-LAB: GRAPHING AND ANALYZING DISTANCE AND Time DATA

Let's say that you go on a practice run for an upcoming Cross Country meet. You quickly fall into a fast and steady pace; you're totally in the zone! You run along a tree-lined trail where the trees are evenly spaced 2.0 meters apart. The time it takes you to run between each tree is 0.5 seconds.

1. Create a data table (boxed in using a ruler!): one column is for time (in seconds) and one column for distance (in meters).
a. Fill in the table with data from the situation above. Your time will increase by 0.5 s intervals from 0.0 to 5.0 seconds.
b. Make sure that the data table has a number and a descriptive title!
2. On a piece of graph paper, create a full-sized graph: Distance vs. Time (remember, this is always written as " y " vs. " x ").
a. Include all of the data points from your table
b. Draw a best-fit line through your data points
c. How would you describe the speed you are running at: constant, increasing, or decreasing? Explain your reasoning using the graph.
3. Calculate the slope of your best-fit line. Show your work (with units) and include the appropriate units in your final answer.

$$
\text { slope }=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

4. What does the value of the slope of a distance v. time graph represent?

GREAT JOB! Make sure to double check your work with a partner. You're ready for our next lab!

PRE-LAB: GRAPHING AND ANALYZING DISTANCE AND TIME DATA

Let's say that you go on a practice run for an upcoming Cross Country meet. You quickly fall into a fast and steady pace; you're totally in the zone! You run along a tree-lined trail where the trees are evenly spaced 2.0 meters apart. The time it takes you to run between each tree is 0.5 seconds.

1. Create a data table (boxed in using a ruler!): one column is for time (in seconds) and one column for distance (in meters).
a. Fill in the table with data from the situation above. Your time will increase by 0.5 s intervals from 0.0 to 5.0 seconds.
b. Make sure that the data table has a number and a descriptive title!
2. On a piece of graph paper, create a full-sized graph: Distance vs. Time (remember, this is always written as " y " vs. " x ").
a. Include all of the data points from your table
b. Draw a best-fit line through your data points
c. How would you describe the speed you are running at: constant, increasing, or decreasing? Explain your reasoning using the graph.
3. Calculate the slope of your best-fit line. Show your work (with units) and include the appropriate units in your final answer.

$$
\text { slope }=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

4. What does the value of the slope of a distance v. time graph represent?

GREAT JOB! Make sure to double check your work with a partner. You're ready for our next lab!

