Momentum and Energy Quiz Review Key

Instructions: Show your work completely in your journal when answering the following questions.

1. Define the following (conceptual definition and equation):
a. Momentum

Momentum is similar to inertia in motion; $p=m \cdot v$
b. Impulse

Impulse is a force applied over a time interval; $I=F \Delta t=\Delta p$
c. Conservation of Momentum

The momentum of a system before an event is equal to momentum afterward.

$$
\boldsymbol{p}_{\text {before }}=\boldsymbol{p}_{\text {after }}^{\prime}
$$

d. Kinetic Energy

Energy due to motion; $E_{K}=\frac{1}{2} \boldsymbol{m} v^{2}$
e. Potential Energy

Energy due to position/location; $E_{P}=m g h$
f. Mechanical Energy

Energy due to motion or location of a physical body; $M E=E_{K}+E_{P}$
g. Conservation of Energy

Mechanical energy of a system remains constant before and after an event;

$$
E_{K 1}+E_{P 1}=E_{K 2}^{\prime}+E_{P 2}^{\prime}
$$

h. Elastic Collision

A collision where objects bounce off each other undamaged;

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}
$$

i. Inelastic Collision

A collision where objects bounce off and each is damaged OR objects collide and stick together;

$$
m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) v^{\prime}
$$

2. What is the kinetic energy for the following objects?
a. A 65 kg runner moving with a speed of $7.0 \mathrm{~m} / \mathrm{s}$

$$
\begin{gathered}
E_{K}=\frac{1}{2} m v^{2}=\frac{1}{2}(65 \mathrm{~kg})(7.0 \mathrm{~m} / \mathrm{s})^{2} \\
\boldsymbol{E}_{\boldsymbol{K}}=\mathbf{1 6 0 0} \mathbf{~ J}
\end{gathered}
$$

b. A 2.0 million kg space shuttle with a launch speed of $44 \mathrm{~m} / \mathrm{s}$

$$
\begin{gathered}
E_{K}=\frac{1}{2} m v^{2}=\frac{1}{2}(2000000 \mathrm{~kg})(44 \mathrm{~m} / \mathrm{s})^{2} \\
\boldsymbol{E}_{\boldsymbol{K}}=\mathbf{1} .9 \times \mathbf{1 0}^{\mathbf{9}} \mathbf{J}
\end{gathered}
$$

c. A 5.0 kg bowling ball moving with a speed of $9.5 \mathrm{~m} / \mathrm{s}$

$$
\begin{gathered}
E_{K}=\frac{1}{2} m v^{2}=\frac{1}{2}(5.0 \mathrm{~kg})(9.5 \mathrm{~m} / \mathrm{s})^{2} \\
\boldsymbol{E}_{\boldsymbol{K}}=\mathbf{2 3 0} \mathbf{~ J}
\end{gathered}
$$

d. A 75 kg skier at rest

$$
\begin{gathered}
E_{K}=\frac{1}{2} m v^{2}=\frac{1}{2}(75 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})^{2} \\
\boldsymbol{E}_{\boldsymbol{K}}=\mathbf{0} \mathbf{~ J}
\end{gathered}
$$

3. What is the potential energy for the following objects?
a. A 0.50 kg orange sitting on a shelf 2.0 meters off the ground

$$
\begin{gathered}
E_{P}=m g h=(0.50 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(2.0 \mathrm{~m}) \\
\boldsymbol{E}_{\boldsymbol{P}}=\mathbf{9 . 8 ~ J}
\end{gathered}
$$

b. A 68 kg snowboarder sitting on a ramp 15 meters high

$$
\begin{gathered}
E_{P}=m g h=(68 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(15 \mathrm{~m}) \\
\boldsymbol{E}_{\boldsymbol{P}}=\mathbf{1 . 0} \times \mathbf{1 0}^{\mathbf{4}} \mathrm{J}
\end{gathered}
$$

c. A 1200 kg car parked in a garage 6 stories up (21 meters)

$$
\begin{gathered}
E_{P}=m g h=(1200 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(21 \mathrm{~m}) \\
\boldsymbol{E}_{\boldsymbol{P}}=\mathbf{2} . \mathbf{5} \times \mathbf{1 0}^{\mathbf{5}} \mathbf{J}
\end{gathered}
$$

d. A 16 kg box sitting on the floor

$$
\begin{gathered}
E_{P}=m g h=(16 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0 \mathrm{~m}) \\
\boldsymbol{E}_{\boldsymbol{P}}=\mathbf{0} \mathbf{~ J}
\end{gathered}
$$

4. You decide to apply your vast knowledge of physics to baseball. You swing the bat and, oops, it's a pop up. The 0.145 kg ball starts straight up off the bat at $35 \mathrm{~m} / \mathrm{s}$.
a. How much kinetic energy does the ball have initially? At the top?

$$
\begin{gathered}
E_{K(1)}=\frac{1}{2} m v^{2}=\frac{1}{2}(0.145 \mathrm{~kg})(35 \mathrm{~m} / \mathrm{s})^{2} \\
\boldsymbol{E}_{\boldsymbol{K}(\mathbf{1})}=\mathbf{8 9} \mathbf{~ J} \\
\boldsymbol{E}_{\boldsymbol{K}(\mathbf{2})}^{\prime}=\mathbf{0} \mathbf{~ J}
\end{gathered}
$$

b. At the top, what is the ball's potential energy?

$$
\begin{gathered}
E_{K 1}+E_{P 1}=E_{K 2}^{\prime}+E_{P 2}^{\prime} \leadsto 89 \mathrm{~J}+0=0+E_{P 2}^{\prime} \\
{\boldsymbol{\boldsymbol { E } _ { P 2 } ^ { \prime }}=\mathbf{8 9} \mathbf{~}}^{\text {a }}
\end{gathered}
$$

c. The catcher catches the ball. Just before it hits, what is the ball's kinetic energy? Potential energy?

Kinetic energy is conserved in an elastic collision. Thus:

$$
\begin{array}{|c|}
\hline E_{K}=89 \mathrm{~J} \\
\hline E_{P}=0 \mathrm{~J}
\end{array}
$$

5. You go next door from the baseball field and find the local pool. You climb up onto the 10. m platform to take a dive. If your mass is $50 . \mathrm{kg}$:
a. What is the change in potential energy when you climb up there?

$$
\begin{gathered}
\Delta E_{P}=E_{P(2)}-E_{P(1)}=m g h_{2}-m g h_{1}=(50 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(10 \mathrm{~m})-0 \\
\Delta \boldsymbol{E}_{\boldsymbol{P}}=\mathbf{4 9 0 0} \mathbf{~ J}
\end{gathered}
$$

b. You jump. How fast are you going just before striking the water $10 . \mathrm{m}$ below?

$$
\begin{gathered}
E_{K 1}+E_{P 1}=E_{K 2}^{\prime}+E_{P 2}^{\prime} \leadsto 0+4900 \mathrm{~J}=E_{K 2}^{\prime}+0 \\
E_{K 2}^{\prime}=4900 \mathrm{~J} \\
E_{K(2)}^{\prime}=\frac{1}{2} m v^{2} \sim 4900 \mathrm{~J}=\frac{1}{2}(50 \mathrm{~kg}) v^{2} \\
v=\mathbf{1 4} \mathbf{~ m} / \mathbf{s}
\end{gathered}
$$

6. A world-class Olympic athlete starts from rest on top of a 100 . meter hill, skis down the incline and makes a world-record setting jump. If she has a mass of 55 kg , use the information given in the diagram to fill in the missing information.
a.

Point A

Point A:

$$
\begin{gathered}
\boldsymbol{E}_{\boldsymbol{P}}=m g h=(55 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(100 \mathrm{~m})=\mathbf{5 3 , 9 0 0} \mathbf{~ J} \\
\boldsymbol{E}_{K}=\frac{1}{2} m v^{2}=\mathbf{0} \mathbf{~ J} \\
M E=E_{K}+E_{P}=53,900 \mathrm{~J}
\end{gathered}
$$

Point C:

$$
\begin{gathered}
M E=\text { constant }=53,900 \mathrm{~J} \\
\boldsymbol{E}_{\boldsymbol{P}}=m g h=(55 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(30 \mathrm{~m})=\mathbf{1 6 , 1 7 0} \mathrm{J} \\
M E=E_{K}+E_{P} \leadsto \boldsymbol{E}_{K}=M E-E_{P}=53900 \mathrm{~J}-16170 \mathrm{~J}=\mathbf{3 7 , 7 3 0} \mathrm{J}
\end{gathered}
$$

Point D:

$$
\begin{gathered}
M E=\text { constant }=53,900 \mathrm{~J} \\
M E=E_{K}+E_{P} \leadsto \boldsymbol{E}_{P}=M E-000 \mathrm{~J} \\
E_{P}=m g h \leadsto \boldsymbol{E}=\frac{E_{K}=53900 \mathrm{~J}-22000 \mathrm{~J}=\mathbf{3 1 , 9 0 0} \mathrm{J}}{m g}=\frac{31900 \mathrm{~J}}{(55 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=5 \mathbf{5 9 \mathbf { m }}
\end{gathered}
$$

Point E:

$$
\begin{gathered}
M E=\text { constant }=53,900 \mathrm{~J} \\
M E=E_{K}+\frac{\boldsymbol{E}_{\boldsymbol{P}}=\mathbf{0} \mathbf{~ J}}{E_{P} \sim \boldsymbol{E}_{K}}=\mathbf{5 3 , 9 0 0} \mathbf{~ J}
\end{gathered}
$$

b. Calculate her velocity at points B and C

Point B (equivalent to point D since they're at the same height!):

$$
\begin{gathered}
E_{K}=\frac{1}{2} m v^{2}=22,000 \mathrm{~J} \\
v_{B}=\sqrt{\frac{2 E_{K(B)}}{m}}=\sqrt{\frac{2(22000 \mathrm{~J})}{(55 \mathrm{~kg})}} \\
v_{\boldsymbol{B}}=28^{\mathrm{m} / \mathbf{s}}
\end{gathered}
$$

Point C:

$$
\begin{gathered}
E_{K}=\frac{1}{2} m v^{2}=37,730 \mathrm{~J} \\
v_{C}=\sqrt{\frac{2 E_{K(C)}}{m}}=\sqrt{\frac{2(37730 \mathrm{~J})}{(55 \mathrm{~kg})}} \\
v_{C}=\mathbf{3 7} / \mathbf{m}
\end{gathered}
$$

7. Use the law of conservation of energy to fill in the blanks at the various marked positions for a 1000 . kg roller coaster car.

A. $E_{P}=m g h \leadsto h=\frac{E_{P}}{m g}=\frac{450000 \mathrm{~J}}{(1000 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)} \leadsto \boldsymbol{h}=46 \mathrm{~m}$
B. $E_{K}=0 \leadsto v_{B}=0 \mathrm{~m} / \mathrm{s}$
C. $M E=E_{K}+E_{P} \leadsto E_{K}=M E-E_{P}=450000 \mathrm{~J}-200000 \mathrm{~J} \leadsto E_{K}=250,000 \mathrm{~J}$
D. $E_{P}=m g h \leadsto h=\frac{E_{P}}{m g}=\frac{200000 \mathrm{~J}}{(1000 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)} \leadsto \boldsymbol{h = 2 0 . \mathrm { m }}$
E. $E_{K}=\frac{1}{2} m v^{2}=200,000 \leadsto v_{B}=\sqrt{\frac{2 E_{K(B)}}{m}}=\sqrt{\frac{2(250000 \mathrm{~J})}{(1000 \mathrm{~kg})}} \leadsto v_{B}=22^{\mathrm{m} / \mathrm{s}}$
F. $M E=E_{K}+E_{P} \leadsto E_{K}=450,000 \mathrm{~J}$
G. $E_{P}=m g h \leadsto E_{P}=0 \mathrm{~J}$
H. $E_{K}=\frac{1}{2} m v^{2}=400,000 \leadsto v_{B}=\sqrt{\frac{2 E_{K(B)}}{m}}=\sqrt{\frac{2(450000 \mathrm{~J})}{(1000 \mathrm{~kg})}} \leadsto v_{B}=30 . \mathrm{m} / \mathrm{s}$
