More Work and Power Practice

Instructions: Show your work completely for the following problems.

1. Ryan is applying his physics skills by doing a little carpentry. Through his effort and gravity, a total downward force of $50 . \mathrm{N}$ is applied to a 0.60 kg hammer through a distance of 1.5 m .
a. How much work is done on the hammer?
b. If the hammer starts from rest, how much kinetic energy does it have at the end of the swing?
c. What is the speed of the hammer at the end of the swing?
d. The hammer comes to rest after impacting a nail which moves 6.0 mm into the wood. How much work does the nail do on the hammer?
e. What is the force the nail pushes against the hammer with to stop it?
2. Richard is pulling Alexis across the snow with a constant force of $40 . \mathrm{N}$ at an angle of 35° from the horizontal.
a. If Alexis and the sled have a combined mass of $40 . \mathrm{kg}$, how far does Richard have to pull to speed the sled up from 0 to $2.0 \mathrm{~m} / \mathrm{s}$?
b. Richard lets go and Alexis coasts to a stop. If the friction force is 5.0 N , how far does the sled coast?
3. Javier designs a crash test while investigating a case: A $7 \overline{0} 0 \mathrm{~kg}$ car is initially moving at $10 . \mathrm{m} / \mathrm{s}$. It is crashed into a solid wall and the car's "crumple zone" crumples up a distance of 1.5 meters during impact. Calculate the impact force on the car. Show all proper equations, substituting and canceling of units.
4. Kate climbs a flight of stairs 10. meters high. She has a mass of 65 kg .
a. How much work is required?
b. If Kate is forced to jump from this level into a safety net below, what will be her speed just before impact?
