

MOTION PRACTICE #1 ANSWER KEY

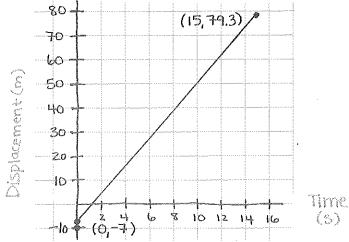
For the following problems, let's designate the Skyline Flagpole of Physics as the "origin." Let's also designate **north** to be the positive direction and **south** as the negative direction.

- 1. If you start 3m north of the flagpole and ride your bike at a constant velocity of 4 $^{\rm m}/_{\rm s}$ for 12 seconds:
 - a. Use the equation $d_2 = v \cdot t + d_1$ to calculate your final displacement

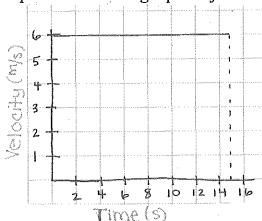
b. Sketch a quantitative *d-t* graph of your motion

c. Sketch a quantitative *v-t* graph of your motion

- 2. If you start 7m south of the flagpole and ride your bike at a constant velocity of $5.75 \, \text{m/s}$ for 15 seconds:
 - a. Calculate your final displacement

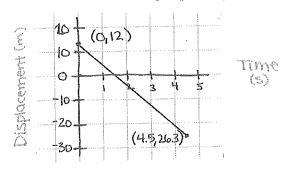

South
$$\Rightarrow d = -7m$$

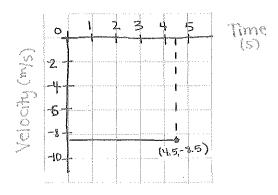
North of the pole


 $d = V + d$
 $d = V + d$
 $= (5.75 \%)(15 \%) + (-7 m)$
 $d = 7$
 $d = 7 + 79 \cdot m$

North of the pole

b. Sketch a quantitative d-t graph of your motion

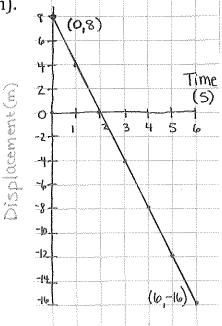

c. Sketch a quantitative *v-t* graph of your motion


- 3. If you start 12m north of the flagpole and ride your bike at a constant velocity of -8.5 $^{\rm m}/_{\rm s}$ for 4.5 seconds:
 - a. Calculate your final displacement

$$d = 12m$$
 $d = V \cdot t + dI$
 $V = -8.5 \text{ M/s}$ $(4.5 \text{ m}) + (12 \text{ m})$
 $t = 4.5 \text{ s}$ $d = 7.26 \text{ m}$ 2 of 3
 $d = 7.26 \text{ m}$ 2 of 3

b. Sketch a quantitative *d-t* graph of your motion

c. Sketch a quantitative *v-t* graph of your motion



4. Sketch a quantitative d-t graph for the following motion:

Starting at 8m north of the flagpole, you ride towards the pole (eventually passing it) covering 4 meters every second for a total of 6 seconds.

Write a linear equation describing this motion in the form y = mx + b (but replace y and x with the appropriate variables

for our graph).

$$m = Slope = \frac{dzd_1}{tzt_1} = \frac{(16-8)m}{(6-0)5} = -4m/2$$

$$U = mx + b$$

$$V + v + v$$

$$V +$$