- Newton's 3rd Law is known as the Law of ______. Whenever one body exerts a ______ on the second body, the second body exerts an ______ force in the ______ direction.
- In every interaction, forces occur in ______. For example, when you walk across the floor, you push the floor (forward, backward) and the ______ pushes you (forward, backward). The action/reaction forces do not cancel out because ______ objects are involved, each experiencing a ______ force.
- When a kicker kicks a football with a force of 100 N, the ball ______.
 The effects are different because the kicker has more ______ and therefore accelerates (more, less).
- 4. If you are weighing yourself while standing next to the bathroom sink, and you pull upward on the sink, your weight will appear to be (more, less) because the sink ______ on you.
- 5. For the following action forces, give the reaction forces:
 - a. Hammer hits nail. _____
 - b. Earth pulls down on falling leaf.
 - c. Falling leaf pushes air down.
 - d. Man pushes elephant forward with a force of 500 N. _____
- 6. Look at the diagram on the right. The earth pulls down on the girl and the ropes pull up on her with equal force. The net external force on the girl is ______. Why is this not an example of an action/reaction pair?

State the two action/reaction pairs of force involving the girl: