Newton's 2nd Law of Motion (Law of acceleration)

Note Taking Guide - Episode 402

An object will <u>accelerate</u> in the direction of the net <u>force</u> exerted on it. Conclusions from experiment: "a" a ____ a & fret " and a" are directly proportional "Fret" and "a" are directly proportional Newton's 2nd Law: · When a <u>net</u> <u>force</u> is exerted on a object, the object accelerates in the direction of the net force • Acceleration is directly proportional to force and inversely proportional to mass. $a = \frac{F_net}{m}$ Fret = m.a equation for the law: F_{net} and a are in the same <u>direction</u>. (Show this with arrows: $F_{net} = ma$) $F_{net} = \frac{Kq}{\sqrt{2}} \times \frac{m}{\sqrt{2}}$ Insert units for "m" and "a " 1 N = force required to accelerate a mass of 1 kg 1 C2 In fundamental units, 1N = 1kg · 1 m s² Problem Set #1: Force and acceleration 2) f = 18N $a = \frac{Fnet}{m}$ $m = \frac{Fnet}{a}$ m = 1.1 kg m = 2 m = 1.1 kgFret = 870N $d = d_1 + U_1 + d_2 + d_3 + d_4 +$