\qquad
\qquad
\qquad

CHAPTER

1 Enrichment

Metartals

"en

- graph paper
- ruler
- calculator

Graphing Nonlinear Relationships

Seventeenth-century physicist Galileo looked for an equation to compute the distance traveled by a falling object. He created a mathematical expression relating distance (d), the gravitational attraction of Earth near its surface (g), and time (t) :

$$
d=\frac{1}{2} g t^{2}
$$

At Earth's surface, g is a constant measuring $9.80 \mathrm{~m} / \mathrm{s}^{2}$.

Procedure

Use Galileo's equation to create a table quantifying the distance a falling object travels every second for 10 seconds.

Time (s)	Distance (m)
0	0
1	4.9 m
2	19.6
3	44.1
4	78.4
5	122.5
6	176.4
7	240.1
8	313.6
9	396.9
10	490

\qquad

Results

1. What is the independent variable in Galileo's equation? What is the dependent variable? Explain your answer.

$$
\text { Independent Variable }=\text { time }
$$

\qquad

$$
\text { Dependent Variable }=\text { distance }
$$

2. Graph the results from the table on the previous page.

Distance us time

3. What shape is the line of best fit on your graph? Why?
\qquad
\qquad

