Machines and Mechanical Energy Notes
Note Taking Guide - Episode 604 - Part 1
Mechanical Advantage - ratio of output to input forces
equation: M.A. = Fout Fin
The greater the M.A. of a machine, the <u>easier</u> it is to operate.
In ideal machines, work $\frac{1}{1000}$ = work $\frac{00000}{1000}$ Real machines are not this efficient.
Efficiency- percentage of useful work produced
equation: $Eff = \frac{W_{0}}{W_{0}} \times 100$
Machines cannot be 100% efficient: • Work done to overcome <u>friction</u> is changed into <u>heat</u> .
. The heat goes into the surroundings
· Friction is a <u>dissipative</u> force.
 As M.A. increases, the Eff of a machine <u>decreases</u>.
· Loss of efficiency is due to <u>friction</u> .
Problem Set #1 (1a-d): (on back)
Power- work done per unit of time · P=W
· Unit = the watt (W) 1W = 1 Watt
1, W = 1715 P = W = F.d
A box weighing 580 N is lifted 22 m straight up in 15 s by a machine. What is the power of the machine?
$F_W = 520N P = W = \frac{520N \cdot 22m}{150} = 850W$
$dout = 22m$ Δt 155
$\Delta t = 155$
P=7 PHYSICSFundamentals © 2004, GPB 6-15