\{Machines and Mechanical Energy Notes\}
Note Taking Guide - Episode 604 -Part 1
Mechanical Advantage - ratio of output to input forces equation: M.A. $=\frac{\text { Foul }}{\text { Fin }}$
The greater the M.A. of a machine, the \qquad easier it is to operate.

In ideal machines, work input = work output Real machines are not this efficient.
Efficiency- percentage of useful work produced. equation: \quad Eff $=\frac{\text { Wout }}{\text { Win }} \times 100$
Machines cannot be 100\% efficient:

- Work done to overcome \qquad friction is changed into \qquad heat
- The heat goes \qquad into the surroundings
- Friction is a dissipative force.
- As M.A. increases, the Eff of a machine \qquad decreases .
- Loss of efficiency is due to \qquad friction

Problem Set \#1 (1a-d): (on back)
Power -work done per unit of time

- $P=\frac{W}{t}$
- Unit = the watt (W) $1 W=1$ Watt
- $1 W=1$ J $1 s$
- $P=\frac{W}{t}=\frac{F \cdot d}{t}$

A box weighing 580 N is lifted 22 m straight up in 15 s by a machine. What is the power of the machine?

$$
\begin{aligned}
& \text { power of the machine? } \\
& F W=580 \mathrm{~N} \\
& \text { lout }=22 \mathrm{~m} \\
& \Delta t=15 \mathrm{~s}
\end{aligned} \quad P=\frac{W}{\Delta t}=\frac{580 \mathrm{~N} \cdot 22 \mathrm{~m}}{15 \mathrm{~s}}=850 \mathrm{~W}
$$

$$
P=?
$$

PHYSICSFundamentals
© 2004, GPB
6-15

