
PAT PROJECTILE PRACTICE PROBLEMS (PPPP)

- 1. Pat aims his potato gun horizontally at a target 90.0 meters away. He lines the bull's eye up in the sights. The potato leaves the gun with a horizontal velocity of 200. m/s.
 - a. How much time does it take the potato to reach the target?
 - b. Does Pat hit the bull's eye (assuming the left-right aim is good)? If not, by how much does he miss?

a)
$$d_h = V_h \cdot t \implies t = \frac{d_h}{V_h}$$

 $t = \frac{90.0 \,\text{m}}{200. \,\text{m/s}}$

di = 90.0m $V_{v} = 0 \text{ m/s}$

b.

$$d_V = \frac{1}{2} g t^2$$

$$= \frac{1}{2} (9.80 \text{ m/s}^2) (0.450 \text{ s})^2$$

$$d_{v} = 0.992 \, \text{m}$$

dy = 0.992 m No! He'll miss the bull's eye by 0.992 m!

- 2. Pat is out in an open flat grassy field. He holds the potato gun 1.25 meters off of the ground and fires it horizontally. The potato leaves the gun with a velocity of 300. $^{\rm m}/_{\rm s}$.
 - a. How far will the bullet travel horizontally before hitting the ground?
 - b. After 0.25 seconds of falling, what are the horizontal and vertical components of its velocity?

a.
$$d_{V} = 1.25m$$
 $V_{h} = 300. \text{ m/s}$
 $V_{V} = 0 \text{ m/s}$ $Q_{h} = 0 \text{ m/s}^{2}$
 $Q_{V} = 9.80 \text{ m/s}^{2}$ $Q_{h} = ?$
 $Q_{V} = \frac{1}{2}gt^{2} \implies t = \sqrt{\frac{2}{g}}t^{2}$
 $Q_{V} = \frac{1}{2}gt^{2} \implies t = \sqrt{\frac{2}{g$

- 3. Pat is sitting on the flat ground with his potato gun. He aims it at 30° from the horizontal and fires the potato with a velocity of 300° .
 - a. What are the horizontal and vertical components just as it is fired?
 - b. What are the horizontal and vertical components at the top of its path?
 - c. How much time does it take to reach the top of its path?
 - d. How much time does it stay in the air?
 - e. How far away from Pat does the potato hit the ground?

0.
$$V_{h} = 300. \text{ m/s} \text{ e } 30^{\circ}$$
 $V_{h} = V \cdot (650)$
 $V_{v} =$

C.
$$\Delta V_{1} = g \cdot t \Rightarrow t_{1} = \frac{150 \text{ m/s}}{g}$$

$$= \frac{150 \text{ m/s}}{9.80 \text{ m/s}^{2}}$$

$$= \frac{15.3 \text{ s}}{15.3 \text{ s}}$$

d.
$$tup = t_{down} = 15.3s$$

$$t_{total} = tup + t_{down}$$

$$= 15.3s + 15.3s$$

$$t_{total} = 30.6s$$

e.
$$d_h = V_h \cdot t_{botal}$$

= $(2.65 \text{ m/s}) \cdot (30.65)$
= 7959.2 m
 $d_h = 7960 \text{ m}^{3} \text{ s.f.}$

- 4. Pat is sitting on top of a 200. meter high cliff with his potato gun. He fires it at 40° from the horizontal with a velocity of 300. $^{\rm m}/_{\rm s}$.
 - a. What are the horizontal and vertical components of its velocity when it is fired?
 - b. How much time does it take to reach its peak height?
 - c. How much time does it take to reach the ground?
 - d. What is its vertical component just before it hits the ground?
 - e. How far (horizontally) away from the cliff does the potato hit the ground?

a.
$$V_h = V_1 \cdot cos\theta$$
 $V_v = V_1 \cdot usin \theta$
= (300.m/s) cos 40° = (300.m/s). usin 40°
 $V_h = 230 \text{ m/s}$ $V_{v_1} = 193 \text{ m/s}$

b.
$$\Delta V_{y} = g \cdot t \Rightarrow t = \frac{\Delta V}{g}$$

$$= \frac{193 \text{ m/s}}{9.80 \text{ m/s}^{2}}$$

C.
$$d_V = \frac{1}{2}gt^2$$

 $= \frac{1}{2}(9.80 \text{ m/s}^2)(19.7 \text{ s})^2$
 $d_V = 1897 \text{ m}$
2 max height above diff

Total d= 1897m + 200m = 2097m
$$d_v = 2gt^2 \implies t = \sqrt{\frac{2d_v}{g}}$$

$$t_{down} = \sqrt{\frac{2(2097m)}{9.80m/s^2}}$$

$$t_{down} = 20.75$$

d.
$$V_v = g \cdot t \Rightarrow V_v = 0$$
 e top, so use t_{down} = $(9.80 \text{ m/s}^2)(20.75)$ $V_v = 203 \text{ m/s}$

e.
$$d_n = V_n \cdot t_{total}$$

= $(230 \text{ m/s})(40.4\text{ s}) = 9276.5$
 $d_n = 9280 \text{ m} / 3\text{ s.f.}$