Practice Probs Kinematics [16 marks]

1a. This question is about kinematics.
[3 marks]

Fiona drops a stone from rest vertically down a water well. She hears the splash of the stone striking the water 1.6 s after the stone leaves her hand. Estimate the
(i) distance between Fiona's hand and the water surface.
(ii) speed with which the stone hits the water.

Markscheme

(i) $\mathrm{s}=12.5 / 12.6(\mathrm{~m})$;

Allow $g=10 \mathrm{~ms}^{-2}$, answer is 12.8 .
(ii) $v=\sqrt{2 g s}$ or gt; (allow any use of suvat equations)
$=(\sqrt{2 \times 9.8 \times 12.5}=) 15.7\left(\mathrm{~ms}^{-1}\right)$;
Award [2] for a bald correct answer.
Allow $g=10 \mathrm{~ms}^{-2}$ answer is $16.0 \mathrm{~ms}^{-1}$.
Allow ECF from (a)(i)

1b. After the stone in (a) hits the water surface it rapidly reaches a terminal speed as it falls through the water. The stone leaves
[3 marks]
Fiona's hand at time $t=0$. It hits the water surface at t_{1} and it comes to rest at the bottom of the water at t_{2}. Using the axes below, sketch a graph to show how the speed v of the stone varies from time $t=0$ to just before $t=t_{2}$. (There is no need to add any values to the axes.)

Markscheme

straight line to water surface; (allow a slight curve within 10% of t_{1}) clear decrease after hitting surface; (allow straight line or concave curve as shown, do not allow convex curve)
constant non-zero speed reached smaller than maximum; (speed must be less than maximum velocity)
Do not penalize answers where a curve is drawn to the dotted lines as there should not be a discontinuity at the two lines. Do not penalize if the line continues to t_{2} or zero velocity shown at t_{2}.

Da. This question is about kinematics.

State the difference between average speed and instantaneous speed.

Markscheme

average speed is the speed over a period of time/distance; instantaneous speed is the speed at a particular instant in time/point in space.
a/ ms^{-2}

At time $t=0$ the instantaneous speed of the particle is zero.
(i) Calculate the instantaneous speed of the particle at $t=7.5 \mathrm{~s}$.
(ii) Using the axes below, sketch a graph to show how the instantaneous speed v of the particle varies with t.

Markscheme

(i) speed=(area under graph $=)^{1 / 2 \times 7.5 \times 3 ;}$
$=10$ or 11 or $11.3\left(\mathrm{~ms}^{-1}\right)$;
(ii) suitable curve approximating to $v=k t^{2}$;

3a. This question is about kinematics.

Lucy stands on the edge of a vertical cliff and throws a stone vertically upwards.

The stone leaves her hand with a speed of $15 \mathrm{~ms}^{-1}$ at the instant her hand is 80 m above the surface of the sea. Air resistance is negligible and the acceleration of free fall is $10 \mathrm{~ms}^{-2}$.

Calculate the maximum height reached by the stone as measured from the point where it is thrown.

Markscheme

$h=\frac{v^{2}}{2 g}$;
$=\left(\frac{225}{20}=\right) 11 \mathrm{~m}$;
Award [1 max] for 91 m or 91.25 m (candidate adds cliff height incorrectly).

3b. Determine the time for the stone to reach the surface of the sea after leaving Lucy's hand.

Markscheme

time to reach maximum height $=1.5 \mathrm{~s}$;
time to fall $91 \mathrm{~m}=4.3 \mathrm{~s}$;
total time $=5.8 \mathrm{~s}$;
Answer can be alternatively expressed as 3.0 (to return to hand) +2.8 (to fall 80 m).
or
use of $s=u t+1 / 2 a t^{2}$;
$80=-15 t+5 t^{2}$ or $-80=15 t-5 t^{2}$;
$t=5.8 \mathrm{~s}$;

