SUPER STAR PROJECTILE PROBLEMS (STPP) ANSWER KEY

- 1. A movie director is shooting a scene that involves dropping a stunt dummy out of an airplane and into a swimming pool. The plane is 10.0 m above the ground, traveling at a velocity of 22.5 $^{\rm m}/_{\rm s}$ in the positive x direction. The director wants to know where in the plane's path the dummy should be dropped so that it will land in the pool.
 - a. Find the time required for the dummy to reach the ground.
 - b. Determine the horizontal distance the dummy will travel in that time.
 - c. Determine the instantaneous velocity of the dummy as it hits the water. (Velocity's overall magnitude and direction, not just the components)

$$V_h = 22.5 \, \text{m/s}$$
 $V_{V(u)} = 0$
 $a_h = 0$ $a_v = g$
 $d_h = ?$ $d_v = 10.0 \, \text{m}$
 $t = ?$

$$V_h = 22.5 \, \text{m/s}$$
 $V_{vw} = 0$ $0. \ t = ?$ $0. \ d_v = \frac{1}{2} \, d_v = \frac$

b.
$$d_h = ?$$
 $d_h = V_h \cdot t_{total}$
 $= (22.5 \, \text{m/s})(1.43 \, \text{s})$
 $d_h = 32.1 \, \text{m}$

 $C. V_c = ?$

$$V_{f} = \frac{1}{\sqrt{n^{2} + \sqrt{v_{0}^{2}}}}$$

$$= \frac{1}{\sqrt{(22.5 \text{ m/s})^{2} + (14 \text{ m/s})^{2}}}$$

$$V_{f} = \frac{26.5 \text{ m/s}}{\sqrt{s}} \approx 32^{\circ}$$

$$V_{V(+)} = g \cdot t_{down} = (9.80 \, \text{m/s}^2)(1.43 \, \text{s})$$

$$V_{V(+)} = 14 \, \text{m/s}$$

$$\Theta = tan^{-1} \left(\frac{V_{V(+)}}{V_n} \right)$$

$$= tan^{-1} \left(\frac{14 \, \text{m/s}}{22.5 \, \text{m/s}} \right)$$

$$\Theta = 31.9 \, \text{Page 1 of 4}$$

2. A golfer can hit a golf ball a horizontal distance of over 300.0 m on a good drive. What **maximum height** would a 301.5 m drive reach if it were launched at an angle of 25.0° to the ground?

$$V_{i} = ?$$
 $a_{h} = 0$ $a_{v} = g$.
 $\theta = 25.0^{\circ}$ $d_{h} = 301.5 \text{ m}$ $d_{v} = ?$

$$\text{range} = d_{h} = V_{i}^{2} \text{ win } (20)$$

$$V_{i} = \sqrt{\frac{d_{h} \cdot g}{\sin(20)}} = \sqrt{\frac{(301.5 \text{ m})(9.80 \text{ m/s})}{\sin(2.25.0^{\circ})}}$$

V. = 62.11 m/s

$$V_h = V_c \cdot \cos \theta = (62.11 \text{ m/s}) \cos 25^\circ$$

 $V_h = 56.29 \text{ m/s}$

$$d_{v} = \frac{1}{2}gt_{up}^{2}$$

$$= \frac{1}{2}(9.80 \text{ m/s}^{2})(2.678 \text{ s})^{2}$$

3. In a scene in an action movie, a stuntman jumps from the top of one building to the top of another building 4.0 m away. After a running start, he leaps at an angle of 15° with respect to the flat roof while traveling at a speed of 5.0 $^{\rm m}/_{\rm s}$. Will he make it to the other roof, which is 2.5 m shorter than the building he jumps from? (Hint—you need to find his actual vertical displacement and compare to the known)

2.5m
$$V_{i} = 5.0 \text{m/s}$$
 $V_{h} = V_{i} \cos \Theta = 4.8 \text{m/s}$ $V_{viii} = V_{vain}\Theta = 1.3 \text{m/s}$
 $\theta = 15^{\circ}$ $Q_{h} = 0$ $Q_{v} = q$
 $Q_{h} = ?$ $Q_{v} = q$
 $Q_{v} = q$

4. A quarterback throws the football to a receiver who is 31.5 m down the field. If the football is thrown at an initial angle of 40.0° to the ground, at what initial speed must the quarterback throw the ball to be caught at the same height? What is the ball's highest point during its flight?

$$V_{i} = \frac{V_{i}^{2} \cdot 200}{V_{i}}$$

$$V_{i} = \sqrt{\frac{dh \cdot 9}{\sin(20)}}$$

$$V_{i} = \sqrt{\frac{31.5m}{(2.40.0^{\circ})}}$$

$$V_{i} = \sqrt{\frac{31.5m}{(2.40.0^{\circ})}}$$

$$V_{i} = \sqrt{\frac{17.7}{17.7}} \, \text{m/s}$$

$$\frac{dv = \frac{1}{2}gt^{2}}{= \frac{1}{2}(9.80 \, \text{m/s}^{2})(1.165)^{2}}$$

$$\frac{dv}{dv} = 6.61 \, \text{m}$$