\qquad
THIS IS A PRACTICE ASSESSMENT. Show formulas, substitutions, answers (in spaces provided) and units!

1. A fly travels along the x-axis. His starting point is $x=-8.0 \mathrm{~m}$ and his ending point is $x=-16 \mathrm{~m}$. His flight lasts 2.0 seconds. What is his velocity?
2. $-4.0 \mathrm{~ms}^{-1}$

$$
s=x-x_{0}=-16--8=-8 \mathrm{~m} . \quad v=s / t=-8 / 2=-4.0 \mathrm{~ms}^{-1} .
$$

2. A car traveling at $48 \mathrm{~ms}^{-1}$ is brought to a stop in 3.0 seconds. What is its acceleration?
$v=0, u=48, t=3.0$. From $a=(v-u) / t=(0-48) / 3.0=16 \mathrm{~ms}^{-2}$.
3. $16 \mathrm{~ms}^{-2}$
4. The acceleration of a car is $-0.75 \mathrm{~ms}^{-2}$. If its initial velocity is $12.0 \mathrm{~ms}^{-1}$, what is its velocity 2.5 seconds later?
5. $10 . \mathrm{ms}^{-1}$
$v=u+a t=12+(-0.75)(2.5)=10.125 \mathrm{~ms}^{-1}$.
At $t=0.00 \mathrm{~s}$ a fly is located at 0.0 m (marked with an \times). The fly is traveling in the positive x-direction. Every 0.50 seconds there is another \times marking the fly's position.

6. Complete the table:
7. See table
8. On the graph, plot the velocities vs. the times from your table.
9. See graph

$t(\mathrm{~s})$	$x(\mathrm{~m})$	Δt	Δx	v
0.00	0.0			
0.50	3.0	0.50	3.0	6.0
1.00	9.0	0.50	6.0	12.
1.50	18.	0.50	9.0	18.

6. Find the acceleration of the fly.
7. $12 \mathrm{~ms}^{-2}$ $a=$ slope $=$ rise $/$ run $=(18-0) / 1.50=12 \mathrm{~ms}^{-2}$.

Pinky and The Brain have developed a rocket that will accelerate at $16.0 \mathrm{~ms}^{-2}$.
7. How fast will they be going 25.0 seconds after liftoff?

$$
v=u+a t=0+(16)(25)=400 \mathrm{~ms}^{-1} .
$$

8. How far will they have gone 25.0 seconds after liftoff?
9. $400 \mathrm{~ms}^{-1}$
$s=u t+(1 / 2) a t^{2}=0(25)+(1 / 2)(16)\left(25^{2}\right)=5000 \mathrm{~m}$.

A bowling ball is launched upward with an initial speed of $25.0 \mathrm{~ms}^{-1}$.
9. How long will it take to reach its maximum height?
9. 2.5 s
$v=u+a t \rightarrow t=(v-u) / a=(0-25) /-10=2.5 \mathrm{~s}$.
10. How far above its launch point will it go up?
10. 31 m
$s=u t+(1 / 2) a t^{2}=(25)(2.5)+(1 / 2)(-10)\left(2.5^{2}\right)=31.25 \mathrm{~m}$.
11. How long will it be in the air before returning to its launch point?
11. 5.0 s
$s=u t+(1 / 2) a t^{2} \rightarrow 0=(25) t+(1 / 2)(-10) t^{2} \rightarrow t=5.0 \mathrm{~s}$. Note that t up $=t$ down.

A bowling ball is dropped from a balcony on the Tower of Pisa that is 18 m above the ground.
12. How long will it take to reach the ground?
$s=u t+(1 / 2) a t^{2} \rightarrow-18=(0) t+(1 / 2)(-10) t^{2} \rightarrow t=1.897 \mathrm{~s}$.
13. What will its speed be when it reaches the ground?

$$
v=u+a t=0+(-10)(1.897)=-18.97 \mathrm{~ms}^{-1} .
$$

A bowling ball is thrown downward at $22 \mathrm{~ms}^{-1}$ from a balcony on the Tower of Pisa that is 18 m above the ground.
14. What will its speed be when it reaches the ground?

$$
v^{2}=u^{2}+2 a s=22^{2}+2(-10)(-18) \rightarrow v=29.05 \mathrm{~ms}^{-1} .
$$

15. How long will it take to reach the ground?
$v=u+a t \rightarrow t=(v-u) / a=(-29.05--15) /-10=1.405 \mathrm{~s}$.

A whale is in free-fall. Her speed vs. time is plotted in the graph.
16. Draw labeled free-body diagrams of the whale at the times $t=0 \mathrm{~s}, t=10 \mathrm{~s}$, and $t=50 \mathrm{~s}$.

ed?

17. $18 \mathrm{~ms}^{-1}$
18. $0.30 \mathrm{~ms}^{-2}$

12. 1.9 s
13. $-19 \mathrm{~ms}^{-1}$
14. $29 \mathrm{~ms}^{-1}$
15. 1.4 s

\qquad

From graph : $18 \mathrm{~ms}^{-1}$.
18. What is her instantaneous acceleration at $t=20 \mathrm{~s}$?

From graph : $a=$ slope of tangent

$$
a=\text { rise } / \text { run }=(20-8.5) / 38=0.3026 \mathrm{~ms}^{-2} \text {. }
$$

19. What does the area under a velocity vs. time graph tell you?
20. What does the slope of a velocity vs. time graph tell you?
21. What does the area under an acceleration vs. time graph tell you?
22. The displacement
23. The acceleration
24. The velocity change

Two cars A and B are driving at velocities represented below as scale arrows.
22. Sketch accurately the vector representing the velocity of A relative to B on the grid provided. Make it the same scale.
22. See graph

$$
\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{A}}+\left(-\overline{\mathrm{V}_{\mathrm{B}}}\right) .
$$

23. If the grid lines in the previous graph represent $2.0 \mathrm{~ms}^{-1}$ increments, find the magnitude of the vector you drew representing the velocity of A relative to B. Be very exact!
23. $31 \mathrm{~ms}^{-1}$

$$
V_{A B, X}=15 \times 2 \mathrm{~ms}^{-1} \cdot V_{A B, y}=4 \times 2 \mathrm{~ms}^{-1} . \text { Thus } V_{A B}=30^{2}+8^{2} \rightarrow V_{A B}=31.04 \mathrm{~ms}^{-1} .
$$

