1. Give two examples of scalar quantities: \qquad ; \qquad
2. Give two examples of vector quantities: \qquad ; \qquad
3. \qquad quantities have magnitude only. Magnitude is expressed by a \qquad and a \qquad .
4. Vector quantities have \qquad and \qquad
5. Vectors may be represented by \qquad with the magnitude shown by the \qquad .
6. One vector having the same effect as two or more vectors combined is a
\qquad vector.
7. To find the resultant of two component vectors acting in the same direction,
\qquad .
8. To find the resultant of two component vectors acting in opposite directions,
\qquad -.
9. Identify the following quantities as vector or scalar:
a. $5.0 \mathrm{~m} / \mathrm{s}$ South
b. 32 n upward
c. 7.4 g
d. $132.4^{\circ} \mathrm{C}$
\qquad

Use math to solve these problems:

1. What is the resultant of two component vectors of 78.3 units W and 15.2 units N ?
2. An airplane flies southward with a velocity of $922 \mathrm{~km} / \mathrm{h}$. There is a brisk tailwind (meaning blowing on the tail of the plane) with a velocity of $25 \mathrm{~km} / \mathrm{h}$. What is the resultant velocity of the plane?
3. Calculate the components of a resultant vector of 804 units, $17^{\circ} \mathrm{W}$ of S .
4. A person can row a boat $6.93 \mathrm{~km} / \mathrm{h}$ in still water. If the person rows directly west across a river that flows north at $5.00 \mathrm{~km} / \mathrm{h}$, what is the magnitude and direction of the resultant velocity?

Use the head-to-tail method to solve the following:

1. A car travels 150 km east before turning and traveling 275 km north. What is the car's displacement?

2. A student walks 15 paces West then 7 paces South then 8 paces East and finally 5 paces North. What is the resultant from the start to the finish?
