## Warm up <br> 03.26.2018

A $2.05 \times 10^{3} \mathrm{~kg}$ car, $m$, has a speed, $v_{i}$, of $12.0 \mathrm{~m} / \mathrm{s}$. The car then hits a tree. The tree doesn't move, and the car comes to rest.
a. Find the change in kinetic energy of the car.
b. Find the amount of work done
c. Find the size of the force that pushed in the front of the car by 50 cm .


$$
\begin{aligned}
& m=2.05 \times 10^{3} \mathrm{~kg} \\
& v_{i}=12 \mathrm{~m} / \mathrm{s} \\
& v_{f}=0 \mathrm{~m} / \mathrm{s} \\
& d=50 \mathrm{~cm}
\end{aligned}
$$

a) $\triangle K E=$ ?
b) $W=$ ?
c) $F=$ ?
a)

$$
\begin{aligned}
\Delta K E & =K E_{f}-K E_{i} \\
K E_{f} & =\frac{1}{2} m \cdot v_{f}^{2}=0 \% \\
\Delta K E & =-K E_{i}
\end{aligned}
$$

$$
\left\lvert\, \triangle K E=-N E=\frac{1}{2} m \cdot v_{i}^{2}\right.
$$

$$
|\triangle K E|=K E i=1
$$

b) $W=\Delta K E=197600 \mathrm{~J}$
c)

$$
\begin{aligned}
& W=F \cdot d \\
& F=\frac{W}{d}=\frac{147600 y}{0.5 \mathrm{~m}}=29520.0 \mathrm{~N} \\
& \quad F=295200 \mathrm{~N}
\end{aligned}
$$

