1. Use conservation of energy to fill in the blanks for the diagram below. Show all of your work!
(1)

\qquad
$P E=$ \qquad
$P E=$ \qquad
$K E=$ \qquad
$K E=$ \qquad

ME = \qquad
$h=$ \qquad

Point 1:

$$
\begin{gathered}
E_{P}=m g h=(50 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(4 \mathrm{~m})=1960 \mathrm{~J} \\
E_{K}=\frac{1}{2} m v^{2}=0 \mathrm{~J} \leadsto v=0 \mathrm{~m} / \mathrm{s} \\
M E=E_{K}+E_{P}=1960 \mathrm{~J}
\end{gathered}
$$

Point 2:

$$
\begin{gathered}
M E=\text { constant }=1960 \mathrm{~J} \\
E_{P}=m g h=(50 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(3 \mathrm{~m})=1470 \mathrm{~J} \\
M E=E_{K}+E_{P} \leadsto E_{K}=M E-E_{P}=1960 \mathrm{~J}-1470 \mathrm{~J}=490 \mathrm{~J}=\frac{1}{2} m v^{2} \\
v=\sqrt{\frac{2 E_{K}}{m}}=\sqrt{\frac{2(490 \mathrm{~J})}{(50 \mathrm{~kg})}}=4.4 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Point 3:

$$
\begin{gathered}
M E=\text { constant }=1960 \mathrm{~J} \\
E_{P}=m g h=(50 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0 \mathrm{~m})=0 \mathrm{~J} \\
E_{K}=1960 \mathrm{~J}=\frac{1}{2} m v^{2} \\
v=\sqrt{\frac{2 E_{K}}{m}}=\sqrt{\frac{2(1960 \mathrm{~J})}{(50 \mathrm{~kg})}}=8.9 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Point 4:

$$
\begin{gathered}
M E=\text { constant }=1960 \mathrm{~J} \\
E_{K}=\frac{1}{2} m v^{2}=\frac{1}{2}(50 \mathrm{~kg})(6 \mathrm{~m} / \mathrm{s})^{2}=900 \mathrm{~J} \\
M E=E_{K}+E_{P} \sim E_{P}=M E-E_{K}=1960 \mathrm{~J}-900 \mathrm{~J}=1060 \mathrm{~J}=m g h \\
h=\frac{E_{P}}{m g}=\frac{1060 \mathrm{~J}}{(50 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=2.2 \mathrm{~m}
\end{gathered}
$$

